Some Generating Function Relations of Multiindex Hermite Polynomials
نویسندگان
چکیده
منابع مشابه
A Triple Lacunary Generating Function for Hermite Polynomials
Some of the classical orthogonal polynomials such as Hermite, Laguerre, Charlier, etc. have been shown to be the generating polynomials for certain combinatorial objects. These combinatorial interpretations are used to prove new identities and generating functions involving these polynomials. In this paper we apply Foata’s approach to generating functions for the Hermite polynomials to obtain a...
متن کاملNew relations for two-dimensional Hermite polynomials
The effective formulas reducing the two-dimensional Hermite polynomials to the classical (one-dimensional) orthogonal polynomials are given. New one-parameter generating functions for these polynomials are derived. Asymptotical formulas for large values of indices are found. The applications to the squeezed one-mode states and to the time-dependent quantum harmonic oscillator are considered.
متن کاملArticle SOME PROPERTIES OF THE HERMITE POLYNOMIALS AND THEIR SQUARES AND GENERATING FUNCTIONS
In the paper, the authors consider the generating functions of the Hermite polynomials and their squares, present explicit formulas for higher order derivatives of the generating functions of the Hermite polynomials and their squares, which can be viewed as ordinary differential equations or derivative polynomials, find differential equations that the generating functions of the Hermite polynom...
متن کاملSome relations between Kekule structure and Morgan-Voyce polynomials
In this paper, Kekule structures of benzenoid chains are considered. It has been shown that the coefficients of a B_n (x) Morgan-Voyce polynomial equal to the number of k-matchings (m(G,k)) of a path graph which has N=2n+1 points. Furtermore, two relations are obtained between regularly zig-zag nonbranched catacondensed benzenid chains and Morgan-Voyce polynomials and between regularly zig-zag ...
متن کاملOn Hermite-hermite Matrix Polynomials
In this paper the definition of Hermite-Hermite matrix polynomials is introduced starting from the Hermite matrix polynomials. An explicit representation, a matrix recurrence relation for the Hermite-Hermite matrix polynomials are given and differential equations satisfied by them is presented. A new expansion of the matrix exponential for a wide class of matrices in terms of Hermite-Hermite ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computational Applications
سال: 2001
ISSN: 2297-8747
DOI: 10.3390/mca6030189